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Repeat bleaching of a central Pacific coral reef over
the past six decades (1960-2016)
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The oceans are warming and coral reefs are bleaching with increased frequency and severity,
fueling concerns for their survival through this century. Yet in the central equatorial Pacific,
some of the world's most productive reefs regularly experience extreme heat associated with
El Nifio. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to
evaluate the coral community response to multiple successive heatwaves since 1960. By
tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of
Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16
was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (>30%
bleaching) and two moderate (<30% bleaching) events occurred, each coinciding with El
Nifio. While the frequency and severity of bleaching on Jarvis did not increase over
this time period, 2015-16 was unprecedented in magnitude. The trajectory of recovery of this
historically resilient ecosystem will provide critical insights into the potential for coral reef
resilience in a warming world.
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devastating consequences for coral reefs worldwide!. Epi-

sodic thermal extremes superimposed on a secular warm-
ing trend are exposing coral communities to unfamiliar
temperature regimes, triggering expulsion of the symbiotic
zooxanthellae that supply organic carbon to their coral host. This
process, termed bleaching, leads to starvation and often death,
and bleaching-induced mortality has already caused extensive loss
of global coral cover. While coral reefs can recover from severe
bleaching, the time required for recovery is often long?. Conse-
quently, climate model predictions of annual bleaching by 2050, if
realized, are incompatible with the survival of most coral reefs
through the end of this century?.

The 2015-16 El Nifio caused sea surface temperature (SST)
anomalies far in excess of those normally experienced by most
coral reefs in the Pacific basin. For some, including the northern
Great Barrier Reef, the 2015-16 event marked their first experi-
ence with severe thermal stress and led to widespread bleaching
and mortality*. Conversely, coral reefs in the central equatorial
Pacific, the epicenter of El Nifio-Southern Oscillation dynamics,
experience dramatic fluctuations in temperature every few years.
Within the satellite SST era alone (1982-present), 3-4 °C tem-
perature anomalies persisted across the region during three super
El Nifio’s, with 0.5-2°C SST anomalies occurring every several
years in between>®. Co-occurring with these temperature changes

Rising ocean temperatures have had rapid, measurable, and

are significant changes in ocean biogeochemistry, as wind-driven
and topographic upwelling weaken or cease altogether, driving
changes in upper ocean nutrient concentrations, primary
productivity”$, and carbonate system chemistry®.

Such environmental extremes are felt strongly by the coral
communities of Jarvis Island, an uninhabited coral reef ecosystem
within the US Pacific Remote Islands Marine National Monu-
ment (0.37°S, 159.99°W). Here, degree heating weeks (DHW), a
metric of accumulated temperature stress!%, approached and/or
exceeded 10 °C-weeks six times since 1982 (Fig. 1). While such
conditions are considered conducive for repeat episodes of cata-
strophic bleaching and mortality, Jarvis appears to have remained
highly productive over much of this time. Surveys conducted
between 2000 and 2009 revealed total cover of reef-building
organisms (primarily corals and coralline algae) close to 50%,
exceeding the central Pacific average for uninhabited islands, and
turf and macroalgal cover significantly lower than average!l.
Further, fish populations on Jarvis are dominated by the highest
trophic levels, and represent one of the largest concentrations of
fish biomass for coral reefs in the central and western Pacific!2.
These observations have raised questions about the nature of the
response of the Jarvis coral communities, and others located in
the central equatorial Pacific, to repeated exposure to extreme
conditions at frequencies expected to devastate most tropical reefs
by mid-century!?.
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Fig. 1 A comparative history of thermal stress represented by Degree Heating Weeks (DHWSs) and cumulative DHWs or Total Hotspot on a Jarvis Island,
central equatorial Pacific, b Palau, western tropical Pacific, and ¢ northern Great Barrier Reef since 1980. DHWs > 4 (red dashed line) are considered

conducive for coral bleaching and > 8 for severe bleaching and mortality. Jarvis corals experienced seven >4 and six > 8 DHW episodes since 1980. Palau
corals experienced two episodes >4 DHW (1998 and 2010). For corals in the northern GBR, the 2016 thermal anomaly was their first encounter with ocean
conditions considered conducive for bleaching. Here, DHWs are calculated using a percentile method rather than the traditional mean monthly maximum
(MMM) to estimate maximum mean SST experienced by each reef. This approach was taken to enable direct comparison between regions dominated by
inter-annual SST variability (central equatorial Pacific) and those dominated by seasonal SST variability (western tropical Pacific). A detailed description of
the percentile method and the comparison with traditional NOAA DHWs for these three sites are provided in the Methods and Supplementary Information
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Here we present a history of the Jarvis coral community
response to repeat El Nifio-induced heatwaves spanning the last
six decades, reconstructed using a bleaching proxy archived in the
skeletons of massive corals that survived these events. Stress
bands, anomalously high-density bands revealed in the skeletons
of massive, long-lived corals by x-radiography or 3-D compu-
terized tomography (CT) scanning, have long been qualitatively
associated with coral bleaching!4-18. Recently, Barkley and
Cohen!® demonstrated a strong correlation between the propor-
tion of stress bands in populations of massive Porites corals in
Palau and the observed severity of community-wide bleaching at
eleven lagoon, patch, and barrier reef stations during the 1997-8
and 2009-10 El Nino’s. This finding provided a quantitative tool
with which to evaluate the severity of the coral reef response to
historical thermal stress in the absence of real-time visual
observations.

In this study, we use ecological surveys conducted on Jarvis in
November 2015 during the peak of the 2015-16 El Nifio, and data
from Howland Island in 2010, to validate the use of the skeletal
bleaching proxy outside of Palau. Skeletal cores extracted from
massive Jarvis Porites corals before (2010, 2012), during (2015)
and after (2016, 2017) the bleaching event allow us, for the first
time to our knowledge, to link stress band formation with active
bleaching, to evaluate the underlying mechanism for stress band
formation, and to track the incorporation of the bleaching signal
into the growing skeleton. Finally, we use stress bands archived in
the skeletons of long-lived coral survivors to reconstruct a quan-
titative history of bleaching on Jarvis and to place the severity of
the 2015-16 event on Jarvis in the context of the last six decades.

Results
The 2015-16 coral bleaching event at Jarvis. Multiple ecological
surveys of Jarvis have been conducted by the Ecosystem Sciences
Division of the National Oceanic and Atmospheric Administra-
tion (NOAA) Pacific Islands Fisheries Science Center since
200020, However, prior to 2015, none of these surveys coincided
with peak El Nifio conditions. Minor bleaching (~3%) was
recorded in April 2010, although those surveys occurred after the
El Nifio had subsided?!. We conducted an expedition to Jarvis
Island from 13t to 16" November 2015 coinciding with the peak
SST anomaly associated with the 2015-16 El Nifo. Our expedi-
tion provided the first opportunity to directly observe and mea-
sure the reef response to extreme heat. At the time of our arrival
on site, SST anomalies in the region had exceeded 3 °C for 20
consecutive weeks (Fig. 1, Supplementary Figures 1-2). Photo-
graphic surveys conducted along triplicate 50 m transects span-
ning 5 m to 25 m depth revealed average live coral cover of 25.3%
cover (+2.5% SE) with visible bleaching in 95.4% (+1.8% SE) of
coral-covered substrate, and a small but significant decrease with
depth (two-way ANOVA, F, 4, =6.64, p=0.009) (Fig. 2, Sup-
plementary Tables 1-2). Levels of bleaching near 100% were
observed in fast-growing Montipora colonies dominant on the
island’s western (leeward) side, branching Pocillopora colonies
abundant on the island’s eastern (windward) side, and massive
Porites colonies, some exceeding 100 years in age. Discrete water
samples and instrument deployments documented a dramatic
shift in nearshore chemistry concurrent with elevated tempera-
tures. Nitrate concentrations on the reef decreased from the cli-
matological mean of 5 uM?? to levels at or below detection. Both
pH and aragonite saturation state (£,,) increased above clima-
tology?2, likely due to a combination of upwelling cessation and a
reduction in reef calcification (Supplementary Figures 3-4, Sup-
plementary Table 3).

Skeletal cores extracted in November 2015 from bleached
Porites colonies revealed the impact of prolonged bleaching on

skeletal growth. In 3-D Computerized Tomography (CT) scans,
unusually high-density bands (called stress bands), otherwise
invisible to the naked eye, were observed forming at the top of
88% of the cores (Fig. 3a, b). In addition, the cores revealed an
~50% decrease in tissue thickness, from an average (+ SE) of 8.3
mm (+0.4mm) in colonies we had sampled during neutral
periods of the El Nifio-Southern Oscillation (September 2012 and
April 2010) to 4.8 mm (+£0.4 mm) in colonies we sampled in
November 2015 (Two-sided Welch T-test, t = 6.3, df = 33.9, 95%
CI=2.3, 4.6, p<0.001). The decrease in tissue thickness, which
likely reflects the bleached corals’ metabolism of their own
biomass to fuel basic physiological functioning during
starvation!”23, plays a major role in stress band formation by
limiting the ability of the coral to extend its skeleton upward
during calcification!8. Consequently, instead of using newly
accreted calcium carbonate to extend upward, the bleached coral
thickens existing skeleton, resulting in a discrete, anomalously
high-density band visible in the CT image.

The prolonged 2015-16 bleaching event on Jarvis led to severe
coral mortality (Fig. 2). Low temperature spikes recorded by
in situ temperature loggers deployed on the west side of the
island, as well as elevated concentrations of dissolved inorganic
nutrients in discrete water samples and decreases in both pH and
Q.. revealed that upwelling had resumed by the time of our
follow-up expedition in May 2016 (Supplementary Figures 2-4).
However, live coral cover had plummeted from 25.3% (+2.5%
SE) to 1.7% (£0.6% SE) (Three-way ANOVA with post hoc
Tukey HSD; 2015-2016: diff = —23.6%, 95% CI = -28.3, —18.9, p
<0.001; Supplementary Tables 1-2). Along our survey transects,
evaluated in both 2015 and in 2016, mortality of non-massive
genera, including previously dominant Montipora and Pocillopora
corals, was nearly 100%, consistent with results of independent
island-wide surveys??. Amongst the surviving corals, we observed
colonies of Acropora, Hydnophora, Pavona, and Favia spp., as
well as massive Porites which exhibited extensive partial mortality
(Fig. 4).

We returned to Jarvis Island again in April 2017, 18 months
after peak bleaching. Coral cover had not measurably increased
(Fig. 2), but initial signs of recovery were evident. Live juvenile
colonies of eleven Scleractinian genera, including Pocillopora,
Porites, Leptoseris, Favia, and Psammocora were observed and
counted (Supplementary Figure 5, Supplementary Table 4) and
crustose coralline algae (CCA) cover, several millimeters thick,
had regained pre-bleaching levels (Supplementary Figure 6,
Supplementary Table 5). Several massive Porites colonies that
appeared dead with no sign of living polyps in 2016 were once
again covered with healthy zooxanthellate-laden tissue, and tissue
thickness had recovered to pre-bleaching levels (average 8.21 mm
+0.14, n =12) (Figs. 3¢, 4). CT scans of skeletal cores extracted
from the recovered colonies in 2017 revealed the 2015 stress
bands and mortality scars now entrapped beneath a new layer of
skeletal growth (Figs. 3¢, 4). In some colonies, post-2015 growth
appeared to have been initiated by the same polyps that created
the stress band but were presumed dead from the prolonged
bleaching. In these colonies, the individual corallite tracks of these
polyps are traceable from beneath and across the stress band and
into the post-bleaching skeletal growth (Fig. 4d).

Skeletal reconstructions of historical coral bleaching. Visual
surveys during three separate expeditions during and after the
2015-16 El Nifo recorded catastrophic bleaching and mortality
on Jarvis in response to extreme and prolonged heat. Further,
massive, long-lived Porites corals that bleached, starved, lost tis-
sue mass, and subsequently recovered, archived a record of the
bleaching event as anomalously high-density stress bands within
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Fig. 2 The impact of the 2015 El Nifio on Jarvis Island coral communities recorded by the first visual surveys of the reef during and after peak El Nifio.
a Montipora-dominated reef communities in April 2015 (NOAA/Paula Ayotte). b The same communities ~100% bleached but still alive in November 2015.
¢ In May 2016, ~95% of corals were dead. d By April 2017, some Porites corals had recovered while cover remained low. @ Mean ( £ standard error) live
coral cover in November 2015 (the sum of living bleached and healthy non-bleached colonies), May 2016 and Apr 2017. No bleaching was observed in
2016 and 2017. Depths are 5-14 m (white), 15-19 m (light gray), and 20-25 m (dark gray). f Mean ( £ standard error) of coral cover bleached in Nov 2015

at three depth bins

their skeletons (Fig. 3). The proportion of Porites colonies pre-
senting with 2015-16 stress bands was consistent with the cata-
strophic scale of bleaching and mortality in the Jarvis coral
community (Fig. 5a).

However, examination of the CT scans of longer skeletal cores
extracted from Jarvis Porites indicate that 2015-16 was not the
first time these corals had formed stress bands. Indeed, multiple
stress bands are apparent down the length of the majority of the
cores (Fig. 3e, Supplementary Figure 7). We used annual high-low
density band counts combined with annual extension rates
estimated by the distance between successive monthly dissepi-
ments'® to assign ages to all the historical stress bands. Two cores
extend back to the turn of the 20t century, and the earliest stress
bands appear in these cores in 1912, indicating that bleaching
occurred on Jarvis over 100 years ago. However, the error on the
stress band proportions derived from only two cores was too large
to support a meaningful interpretation of bleaching severity in the

context of the observational data. Therefore, in this study, we
quantified stress band proportions—the fraction of coral cores
with a stress band in a given year relative to the total number of
cores examined—and reconstructed a history of beaching severity
for the period 1960-2016, with a minimum of 7 cores represented
in each year (Supplementary Tables 6-7).

Between 1960 and 2016, we identified 10 episodes of stress
band formation, always occurring during documented historical
El Nifo events and periods of prolonged elevated SSTs. To
evaluate the degree of stress band formation relative to levels of
thermal stress imposed on the Jarvis coral community during
each event, we calculated (DHW) and the cumulative or Total
Hotspot (i.e., the total number of weeks exceeding 1 °C above the
mean maximum SST)!0, using the weekly resolved satellite-
derived OISST data product (https://www.ncdc.noaa.gov/oisst).
Because satellite-derived weekly SSTs are only available from
1982 through to present, our DHW and Hotspot calculations are
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Fig. 3 The skeletons of Porites corals record the 2015 bleaching (a-¢) and historical bleaching events (d-e) that occurred on Jarvis Island, and for
comparison, on Palau in 1998 (f). In the CT scan images, white is high-density, black is low density. In (@) CT scans of the tops of skeletal cores extracted
from massive Jarvis Porites in 2012 show no sign of stress band formation. 2012 was an El Nifio-Southern Oscillation neutral year and average tissue
thickness measured in the core tops (left, red arrow) approached 1cm, indicating the corals were energetically replete. Conversely, in (b), CT scans of 88%
of the cores extracted in November 2015 revealed high-density stress band in the process of formation (white arrow). Tissue thickness of bleached
colonies was reduced by ~75% (red arrow) indicating starvation. In (¢), a core removed in April 2017 reveals recovery of tissue thickness (red arrow) and
the 2015 stress band sequestered beneath new skeletal growth (scale bar =1cm). Stress bands are confirmed by automated analysis of density variations
(d) where Z-scores > 2 (dashed line) in the detrended density time series are considered stress bands. Long Porites cores from Jarvis reveal multiple
historical stress bands (e) whereas those from Palau have one or two, consistent with documented bleaching events on Palau in 1998 and 2010 (f)

restricted to the period 1982-2016 (Fig. 1, Supplementary
Figure 1). Additionally, conventional NOAA DHW and Hotspot
calculations were developed for off-equatorial regions, where SST
variability is dominated by the seasonal cycle but are inappropri-
ate for the central equatorial Pacific, where SSTs are dominated
by inter-annual variability. Thus, we used a percentile method
rather than the traditional mean monthly maximum to estimate
the maximum mean SST used in the DHW and Hotspot
calculations (see Methods for a detailed description of the
percentile method). From 1982-2016, the proportion of Porites
corals that formed stress bands during each heatwave was highly
correlated with the degree of thermal stress imposed (Pearson’s
2 =0.93; p <0.001) (Fig. 5b), with no evidence for acclimatiza-
tion. Indeed, the greater the level of thermal stress, the higher the
number of Porites corals on Jarvis formed a stress band that year.

We then derived a stress band-community-level bleaching
calibration by regressing Porites stress band proportions against
observational bleaching data for all coral genera collected by
ecological surveys conducted on three Pacific reefs: Jarvis in 2015
(this study) and 20102!, Howland Island in 2010%! (0.8113 °N,
176.6183 °W) and Palau in 1998 and 2010!° (7.5150 °N, 134.5825
°E). The proportion of stress bands in the Porites populations and
the percent bleaching observed in the coral reef community in a
given year are strongly correlated (% bleaching =1.07 + 0.07 SE
(% stress bands)—2.50 + 3.16 SE; Pearson’s r2 = 0.93; p<0.001)

(Fig. 5a). We applied the calibration to the full historical stress
band record from Jarvis to reconstruct the record of community-
wide bleaching at Jarvis back through 1960. Our results reveal a
history of repeat bleaching including moderate (<30% bleaching)
and severe (>30% bleaching) events, in (mean + SE) 2015-16
(91% + 6%), 2009-10 (12% + 7%), 199798 (82% + 9%), 2001-02,
1992-93, and 1987-88 (40-50% *11-14%), 1982-83 (66% *
14%), 1977-78 (17% £ 10%), 1972-73 (38% + 16%), and 1965-66
(74% £ 16%) (Fig. 5¢).

The Extended Reconstructed Sea Surface Temperature (ERSST)
data product (https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.
NCDC/.ERSST/.version3b) provides monthly resolved SST esti-
mates in a 2° x 2° grid box centered on Jarvis Island. We used this
data product to evaluate the magnitude of the 2015-16 SST
anomaly on Jarvis in the context of the historical record of SST at
this site, 1960-2016. The magnitude of the 2015-16 thermal
anomaly on Jarvis was unprecedented since 1960 (Fig. 5¢), and
our historical bleaching reconstruction reveals that the severity of
community-wide bleaching was similarly exceptional. However,
contrary to the global trend*%, we do not detect a statistically
significant increase in the severity of bleaching over time nor an
increase in the frequency of bleaching events in the last 60 years
(Pearson’s r2=0.013, p=0.74). The severity of bleaching in
1997-98, 1982-83, and 1965-66 were statistically within one
standard error of 2015-16, suggesting that Jarvis has experienced
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Fig. 4 Bleaching, tissue loss and recovery of a massive Porites coral on Jarvis Island, and incorporation of the bleaching signal into the skeleton. a Porites ID
497 at 16.5 m depth on the west side of the island (0.369 °S, 160.008 °W) bleached in 2015, and in May 2016, no live tissue was evident on the colony
surface. b, € By April 2017, the coral exhibited almost full recovery. In (d) A 3-D CT scan of a core removed from the recovered colony in 2017 revealed
almost 1cm of new growth above the stress band, a growth rate ~30% lower than pre-bleaching rates (scale bar =1cm). A mortality scar (arrow),
signaling complete localized loss of tissue for an extended period, is also visible in the scan. Corallite tracks, which are the skeletons of individual
polyps, are continuous across the mortality scar, indicating some polyps survived the bleaching deep inside the skeleton, revived and continued to extend

their original corallites once ocean conditions returned to normal

one episode of catastrophic bleaching every 15 years on average,
since 1960. If all bleaching events are considered, the record
implies that the Jarvis coral community has bleached with varying
degrees of severity every five years, on average. Despite a long
history of repetitive bleaching, Jarvis was ranked one of the
healthiest ecosystems in the global ocean in 20122°. Taken
together, these observations suggest uncommon resilience of a
coral reef community exposed to repeated, dramatic fluctuations
in ocean temperature and biogeochemical change.

Recovery potential of Jarvis coral reefs. Under certain circum-
stances, coral reefs are able to recover from catastrophic
bleaching-induced mortality, but require time to do s0?6-28. Thus,
concerns about coral reef futures under 21%t century ocean
warming are centered primarily around high-frequency, repeat

bleaching events which may prevent coral communities from
achieving full recovery before bleaching occurs again and may
preclude adaptation®®. Our historical bleaching reconstruction
reveals a coral reef community that has bleached frequently, and
at times catastrophically, yet appears to have maintained a heal-
thy state over time. Understanding the mechanisms underlying
such resilience could provide key insights into the conditions
under which reefs might tolerate 215t century ocean warming and
help to advance successful management strategies under global
climate change.

Our data suggest that Jarvis corals are not resistant to thermal
stress, as are some coral reef communities considered to be
climate refugia?®. Indeed, our bleaching record indicates that the
severity of bleaching of the Jarvis coral community has been
proportional to the level of thermal stress imposed over the last
six decades. Furthermore, our skeletal records show that Jarvis
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corals bleach repeatedly and, based on our observations of the
impact of the 2015-16 heatwave, it is likely that many probably
die during the most extreme events. Enhanced productivity of the
central equatorial Pacific, fueled by trade wind and topographic
upwelling®, as well as the remote location of the Jarvis system
relative to human populations3!, may play key roles in its
recovery. On Jarvis, extreme El Nifio events that cause bleaching
are generally followed by an abrupt resumption of upwelling
during which cool, nutrient-rich waters fuel rapid tissue biomass
renewal in some species (Fig. 4, Supplementary Figures 2-4).
Jarvis hosts dense populations of herbivorous fish!? that prevent
fast-growing macroalgae from overgrowing the reef substrate!3-32,
and likely stall the shift from coral to algal dominated systems as
occurred in the Caribbean33. In 2016 and 2017, we observed rapid
re-establishment of CCA on Jarvis, as seen in the Phoenix Islands
after the 2002-2003 bleaching®®, likely enabled by effective
grazing and resumption of upwelling (Supplementary Figure 6,
Supplementary Table 5). This step in coral community recovery is
critical because CCA helps to stabilize the substrate following
coral mortality and is a favored settlement substrate for coral
larvae3®> (Supplementary Figure 5, Supplementary Table 4).
Finally, Montipora and Pocillopora species, abundant on Jarvis
prior to 2015, are fast-growing coral genera capable of quickly
recolonizing a  devastated reef following  successful
recruitment3®37, Indeed the dominance of these genera in Jarvis’
highly productive, albeit relatively depauperate, coral community
may be a strategic trade-off that enhances the resilience of coral
reefs in highly stressful environments.

With less than 5% live corals remaining in 2017, it is uncertain
whether new recruits are being supplied primarily by the few
survivors, from deeper dwelling corals that may have been
unaffected by the bleaching, or by larvae from neighboring
islands. The magnitude and duration of the 2015 heat stress was
likely the highest and longest that Jarvis Island coral communities
have ever experienced, a fact that will likely prolong its recovery
relative to prior years. Yet, the historical record implies that Jarvis
has recovered from catastrophic events in the past and gives
reason to hope that Jarvis will regain its previously vibrant and
productive coral-based ecosystem. Further, the protected status of
Jarvis in the Pacific Remote Islands Marine National Monument
ensures intact populations of grazers, and eliminates land-based
sources of sediment and pollution, additional safeguards that are
known to maximize the chances of recovery.

Conclusions

The coral communities on Jarvis Island, a highly productive coral
reef ecosystem in the central equatorial Pacific, experienced cat-
astrophic bleaching and mortality during the 2015-16 El Nifio.
Massive long-lived Porites corals that bleached, starved, suffered
extensive partial mortality, and recovered from the prolonged
heatwave, archived a record of the reef-wide bleaching event as
discrete high-density stress bands within their skeletons. In this
study, we showed that the proportion of stress bands in popu-
lations of Porites corals sampled on three reef systems including
Jarvis, scales with the severity of bleaching in the coral
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communities as recorded by visual observations. Applying this
relationship to down-core records of Jarvis Porites stress bands
reveals that multiple historical bleaching events, three of them
catastrophic, occurred on Jarvis Island between 1960 and 2016.
We found that the frequency and severity of bleaching events did
not increase over this time period. Nevertheless, the magnitude of
the 2015-16 thermal anomaly at Jarvis and the severity of the
2015-16 bleaching were unprecedented in the record. We believe
that the timing and trajectory of recovery of this historically
resilient ecosystem will provide critical new insights into the
potential for coral reef survival in an era of unprecedented ocean
change.

Methods

Percentile-based method for calculated thermal stress. The traditional DHW
calculation (1 °C above the Maximum Monthly Mean or MMM) cannot be
meaningfully applied to regions dominated by inter-annual SST variability, pro-
hibiting a comparison of thermal stress on a global scale. The MMM is average
temperature of the warmest month over several pre-specified years. However in the
central equatorial Pacific, peak temperatures do not occur during the same month
in every year and the traditional MMM calculation generally underestimates the
high end of temperatures that corals normally see at these sites. Consequently,
central equatorial Pacific DHWs calculated using the traditional method are gen-
erally overestimated (Supplementary Figure 1). To enable direct comparison of
thermal stress on reefs dominated by seasonal- vs. inter-annual SST variability, a
percentile-based thermal threshold was developed to estimate the maximum
temperature corals normally experience. Average weekly satellite-based SST's
(IGOSS Reyn_Smith OIv2, 1° x 1° resolution, https://iridlldeo.columbia.edu/
SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2) during neutral years of the El
Nino-Southern Oscillation (1984-5, 1990, 1993, 1996) are binned by percentile at
increments of 0.01 percentile. A test was applied to determine which percentile best
predicts observed bleaching when used as the bleaching threshold (i.e., equivalent
to the MMM + 1 in the DHW calculation). DHW s were calculated for all coral reef
sites reported in Donner et al., (2017)38, usin§1 bleaching thresholds estimated
across a range of threshold percentiles (90.00™ to 99.99™). The derived DHWs
were compared against the database of bleaching observations®, considering each
year at each site an individual event i for a total of n = 21,384 predictions.
Bleaching was predicted for each i if the DHW exceeded 4 °C-weeks during that
year at that site, consistent with the traditional DHW “bleaching likely” prediction.
The overall quality of prediction was assessed using a Brier Score (Supplementary
Figure 8). The power of the model to predict actual bleaching was maximum at the
98th percentile. In a comparison of the percentile-based model with the traditional
MMM model, the percentile-based model outperformed the traditional MMM in
both Brier Score and predictive power, while maintaining a similar number of Type
1 errors (Supplementary Table 8). Analysis of temperature time series was con-
ducted in MATLAB (2017a).

Field expeditions and Permits. Coral skeletal cores, ecological survey data, sea-
water samples, and in situ instrument time series were collected during seven
expeditions to Jarvis Island between 2008 and 2017, aboard the NOAA ship
Hi’ialakai (27-29 March 2008, 2-4 April 2010, 3-5 May 2012, 2-5 April 2017),
Pangaea Exploration S/V Sea Dragon (13-16 September 2012), R/V Machias
(12-15 November 2015), and NOAA ship Oscar Elton Sette (17-23 May 2016).
Research activities and sample collection were conducted under U.S. Fish and
Wildlife Service Pacific Reefs National Wildlife Refuge Complex Research and
Monitoring Special Use Permits 12521-10001 (effective date: 15 Jan 2010;
expiration date: 30 May 2010), 12521-12001 (effective date: 7 Feb 2012; expiration
date: 31 Dec 2012), 12521-12005 (effective date: 29 Aug 2012; expiration date: 30
June 2014), 12521-14001 (effective date: 1 Jan 2015; expiration date: 31 Dec 2015),
and 12513-15001 (effective date: 11 Nov 2015; expiration date: 31 Dec 2015) and in
compliance with Presidential Proclamation 8336.

Coral skeletal core collection and analysis. Skeletal cores were collected from
Porites coral colonies in April 2010 (n = 4), May 2012 (n = 3), September 2012 (n
=6), November 2015 (n = 16), May 2016 (n = 1) and April 2017 (n = I, used here
for imaging purposes only). All cores were collected from colonies at 3-17 m depth
using pneumatic or hydraulic drills with diamond drill bits (Supplementary
Table 6). Cores collected in 2010 and 2012 were sampled from healthy colonies and
were between 50 and 200 cm in length. In 2015, cores were collected from bleached
Porites colonies, and were limited to 5-10 cm length in accordance with United
States Fish and Wildlife Service permitting restrictions. The core collected in May
2016 was collected from a recently dead portion of a massive colony that experi-
enced substantial tissue mortality during the 2015-16 bleaching event. The core
colleced in 2017 was extracted from a recovered colony. Core holes left in the coral
colonies were filled with cement plugs, sealed with underwater epoxy, and secured
flush with the existing colony surface. Visual inspections of coral colonies several

years after coring demonstrated full recovery and complete tissue overgrowth of the
cement plug.

Coral cores were oven-dried and scanned with a Siemens Volume Zoom Helical
Computerized Tomography (CT) Scanner at WHOI and at the University of North
Carolina Biomedical Research Imaging Facility. Density banding and stress band
presence was evaluated in 3-D CT scans of coral cores using the automated coralCT
software. Density time series were extracted and averaged from individual polyp
growth tracks, which accounts for the different ages of skeleton in horizontal cross
sections due to uneven growth geometry, in 0.1 mm increments from the top of the
skeletal core up to 70 cm down core. Density values were converted to Z-scores by
subtracting the long-term core mean density from each raw density value and
dividing by the long-term standard deviation. High-density stress bands were
defined as bands greater than 1 mm thick that spread across the entire width of the
core where density values exceeded two standard deviations of the whole core
density mean (i.e., a Z-score greater than 2). Stress bands that formed prior to 2010
were identified based on density banding patterns counted downward from the
core top. Stress bands that were forming in 2015-16 were dated based on their
location at the very top of the core (indicating that they were forming during the
time of collection). Coral tissue thickness, measured as the vertical distance
between the top of the core to the most recently accreted dissepiment, was
measured on a slice of skeleton cut from the top of each core using a Nikon
SMZ1500 stereomicroscope and SPOT imaging software.

Ecological surveys. Repeat transect surveys were conducted at Jarvis during the
height of the bleaching event (November 2015), at six months (May 2016), and
again at sixteen months (April 2017) post-bleaching. Three 50 m surveyed at each
of three depths (shallow: 5-14 m, mid-depth: 15-19 m, and deep: 20-25 m) on the
west (all depths: 0.369 °S, 160.008 °W) and east sides (shallow: 0.374 °S, 159.983
°W, mid and deep: 0.367 °S, 159.979 °W) of the island. Each replicate 50 m transect
was laid ~5 m apart in the cross-shore direction, and a photograph of a 0.5 m x 0.5
m quadrat taken every meter. Photographs were analyzed using Coral Point Count
with Excel extensions?. Live coral cover of each photograph was evaluated by
randomly overlaying ten points on each image and identifying the type of substrate
(coral vs. non-coral) and any coral colony to the genus level, with 500 points
identified per transect and 1500 points identified per depth. In 2015, random
points that fell on live coral were identified as healthy (pigmented tissue) or
bleached (non-pigmented living tissue), with the bleached cover calculated as the
total number of random points located on bleached tissue divided by the total
number of points identified as live (healthy + bleached) coral. In 2016 and 2017, no
corals in the transects were still bleached, and were therefore identified as either live
or dead. Transect survey data met assumptions for normality (Shapiro Test) and
homoscedasticity (Levene’s test) and were analyzed with three-way ANOVA tests
with post hoc Tukey Honest Significant Difference tests to evaluate the effect of
side (west and east), depth (shallow, mid-depth, and deep), and year (2015, 2016,
2017) on live coral cover and. A two-way ANOVA with post hoc Tukey Honest
Significant Difference test was used to evaluate the effect of side and depth on
bleached coral cover. All statistical analyses were conducted in R (version 3.0.1).
Crustose coralline algae cover and juvenile coral data were provided by the Eco-
system Sciences Division of the NOAA Pacific Islands Fisheries Science Center.

Water sampling. Discrete seawater samples were collected during each sampling
period for salinity, nutrients, total alkalinity (TA), and dissolved inorganic carbon
(DIC). Temperature and depth were recorded with Seabird Electronics (SBE) 19
plus CTD profiler (March 2008- May 2012, April 2015), HOBO temperature
loggers (September 2012), and Sensus Ultra dive data loggers (2015-2016). Sea-
water samples from March 2008, April 2010, May 2012, and April 2015 were
collected during the NOAA Pacific Reef Assessment and Monitoring Program
cruises, and data were provided by the NOAA Pacific Islands Fisheries Science
Center, Ecosystem Sciences Division. Samples from September 2012, November
2015, and May 2016 were analyzed at Woods Hole Oceanographic Institution
(WHOI). TA and DIC analyses were performed using a Versatile Instrument for
the Determination of Total inorganic carbon and titration Alkalinity (Marianda
Analytics and Data) and standardized using certified reference materials obtained
from Andrew Dickson (Scripps Institution of Oceanography). Salinity samples
were analyzed at WHOI using a Guildline autosal salinometer, and nutrient
samples were run at the WHOI Nutrient Analytical Facility. Full CO, system
parameters were calculated from temperature, salinity, TA, and DIC using CO2SYS
with the constants of Mehrbach et al.#! refit by Dickson and Millero*2. Nutrient
and carbonate chemistry values were consistent down to 20 m depth, and samples
collected between 0 m and 20 m were averaged.

Instrument deployments. In situ, long-term temperature logger data were
provided by NOAA and were collected by SBE 39 and SBE 56 temperature
loggers (Sea-bird Electronics, 5-30 min sampling interval) on the west (0.369 °S,
160.008 °W) and east (0.372 °S, 159.983 °W) sides of Jarvis. Short-term oceano-
graphic instrument deployments were conducted at the same sites on 12-15
November 2015 and 16-23 May 2016. Instrument package deployments included a
SAMI-pH sensor (Sunburst Sensors, 15 min sampling interval), SBE-37 Microcat
(Sea-Bird Electronics, 20 s sampling interval), and dissolved oxygen sensor (RBR,
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1 min sampling interval) which were affixed to the reef at 7m (east) and 10 m
(west) depth.

Code Availability. The coral core analysis program coralCT is available online at
https://zenodo.org/record/57855# W 5vwiPkpDz4.

Data availability

Coral skeletal core, ecological, and oceanographic data analyzed in the current
study are presented in the Supplementary Materials and are available in the BCO-
DMO data collection (https://www.bco-dmo.org/project/687813). Additional long-
term oceanographic data and temperature time series collected as part of the
National Coral Reef Monitoring Program are available from Data.gov (http://
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